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A solution of the Ling heat problem with mixed boundary conditions is obtained using the method of
piecewise-linear approximation of the flow. For a constant intensity of the frictional heat flux a re-
solvent of the kernel of the integral equation of the problem is constructed.

Formulation of the Problem. In [1], the authors proposed a method for integrating the quasistation-
ary problem of heat conduction for a half-space −∞ < x < ∞, 0 ≤ y < ∞ in the heating of its surface y = 0 by
a linear distributed heat flux of intensity q(x) = fVp(x), 0 ≤ x < 2a. It was assumed that outside the heating
portion the surface of the half-space is heat-insulated: q(x) = 0, −∞ < x < 2a ∪  2a < x < ∞. In this work, we
investigate the same problem on condition that the heat exchange of the half-space surface with the ambient
medium follows Newton’s law. For this we consider a mixed quasistationary problem of heat conduction of
the form

∂2T

∂η2 = 
∂T

∂ξ
 ,   − ∞ < ξ < ∞ ,   0 ≤ η < ∞ ;

(1)

K 
∂T

∂η


 η=0

 = 




− Λ p∗  (ξ) ,

Bi T ,
     

0 ≤ ξ ≤ 1 ,

− ∞ < ξ < 0 ∪  1 < ξ < ∞ ;

(2)

T → 0   for   √ξ2 + η2  → ∞ . (3)

In relations (1)–(3) the notation is as follows:

ξ = 
x

2a
 ,   η = 

y

d
 ,   p∗  = 

p

p0
 ,

d = √2ak
V

 ,   Bi = 
hd

K
 ,   Λ = 

fVp0d

K
 .

(4)

The form of Eq. (1) indicates that the case of high-speed (Pe > 5) heating of the surface of the half-space is
considered.

The solution of boundary-value problem (1)–(3) obtained using the Fourier integral transformation has
the form [2]
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T (ξ, η) = 

















0 ,

Λ
√π

 ∫ 
0

ξ

G (ξ − τ, η) p∗  (τ) dτ ,

Λ
√π

 ∫ 
0

1

G (ξ − τ, η) p∗  (τ) dτ − 
Bi

√π
 ∫ 
1

ξ

G (ξ − λ, η) T (λ) dλ ,

   

− ∞ < ξ ≤ 0 ,

0 ≤ ξ ≤ 1 ,

1 ≤ ξ < ∞ ,

(5)

where

G (ξ, η) = 
1

√ξ
 exp 




− 

η2

4ξ




 ,   0 ≤ η < ∞ ; (6)

T(λ) ≡ T(λ, 0) is the temperature of the half-space surface.
The solution (5) and (6) differs from the corresponding solution in the case of heat insulation of the

free surface of the half-space [1] only by the presence of a term with the factor Bi/√π  in the relation for the
temperature in the region 1 ≤ ξ < ∞. However, this complicates substantially the calculation of the temperature
field T(ξ, η) since first we must find the surface temperature T(ξ), −∞ < ξ < ∞.

Analysis of the Solution (6). A method for determining the temperature field T(ξ, η) for 0 ≤ ξ ≤ 1
and 0 ≤ η < ∞ by formulas (5) and (6) is presented in [1]. But direct employment of it in the region
1 ≤ ξ < ∞, 0 ≤ η < ∞ behind the heating portion requires some preparatory work. In particular, from formulas
(5) and (6) it follows that for η = 0 we must solve the Volterra integral equation of the second kind with a
weakly singular kernel

T (ξ) + 
Bi

√π
  ∫ 

1

ξ

 
T (λ)

√ ξ − λ
 = F (ξ) ,   1 ≤ ξ < ∞ , (7)

where

F (ξ) = 
Λ

√π
  ∫ 

0

1

 
p∗  (τ) dτ
√ξ − τ

 . (8)

The resolvent of the kernel of integral equation (7) has the form [3]

R (ξ) =  ∑ 

n=1

∞

 
(− Bi √ξ)n

ξΓ 


n
2





 .
(9)

For n = 2k, from relation (9) we find

R2k (ξ) =  ∑ 

k=1

∞

 
(Bi2 ξ)k

ξΓ  (k)
 = Bi2  ∑ 

k=1

∞

 
(Bi2 ξ)k−1

(k − 1) !
 = Bi2 exp (Bi2 ξ) , (10)

and for n = 2k + 1, having used formula 5.2.7.18 of [4], we have
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 = − 
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√πξ
 − Bi2 exp (Bi2 ξ) erf (Bi √ξ )  . (11)

By summing relations (10) and (11) we obtain 

R (ξ) = R2k (ξ) + R2k+1 (ξ) = − 
Bi

√πξ
 + Bi2 exp (Bi2 ξ) erfc (Bi √ξ ) . (12)

The resolvent R(ξ) of (12) allows the asymptotic form

R (ξ) ¡ R
~

 (ξ) = − 
Bi

√πξ
 + Bi2 




1 − 2 Bi √ ξ

π
 + Bi2 ξ




   for   Bi √ξ  << 1 , (13)

R (ξ) ¡ R
~~

 (ξ) = − 
1

2Bi ξ √πξ
   for   Bi √ξ  >> 1 . (14)

Knowing the resolvent R(ξ) of (12), we write the solution of the Volterra integral equation (7) in the
form

T (ξ) = F (ξ) + ∫ 
1

ξ

R (ξ − τ) F (τ) dτ ,   1 ≤ ξ < ∞ , (15)

where the function F(ξ) is determined by formula (8). Thus, the problem has been reduced to evaluation of
the integral in the right-hand side of equality (15). Clearly it is more appealing to use for this purpose the
asymptotic forms (13) and (14) since they contain no probability integrals.

A numerical investigation of the behavior of the resolvent R(ξ − τ) showed that its approximation
R
~

(ξ − τ) using formula (13) is rather (with an absolute error lower than 1%) accurate for values of the argu-
ment ξ − τ ≤ Bi−2. Hence it follows that the integral

 ∫ 
1

ξ

R
~

 (ξ − τ) F (τ) dτ ,   1 ≤ ξ < ∞ , (16)

can be evaluated for 1 ≤ ξ ≤ 1 + Bi−2. We find the range of variation of the Biot number for wheel−rail tribo-
systems. For steel, K = 41 W/(m⋅K) and k = 9.1⋅10−6 m2/sec. In the case of frictional heat generation in
sliding of a locomotive wheel over a rail the width of the heating area is 2a ≈ 10−2 m and the heat-transfer
coefficient does not exceed h ≤ 200 W/(m2⋅K) [5]. Taking into account notation (4), we obtain the estimate
Bi ≤ 0.15⋅10−2 ⁄ √V  for the Biot number. The maximum sliding velocity for the dynamic load of the locomo-
tive wheel is V ≈ 0.75 m/sec. Thus, we find that the upper limit of the change in the Biot number for the
wheel−rail tribocontact does not exceed 10−2. For heat generation on the actual portions of contact,
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2a ≈ 10−4 m [6], and then this limit will decrease by another order of magnitude. Therefore the integral (16)
can certainly be calculated for 1 ≤ ξ ≤ 104.

Uniform Distribution of Contact Pressure. We investigate solution (5) and (6) in the case of a
constant intensity of the pressure

p (x) = 
π
4

 p0 ,   0 ≤ x ≤ 2a ,
(17)

where p0 = 2P ⁄ (πa) is the maximum value of the pressure for an elliptical (Hertz) distribution [7]. Substitu-
tion of the function p∗ (τ) = π ⁄ 4 of (17) under the integrals in relations (5) and integration using results of [1]
yield

T (ξ, η) = 

















0 ,

Tmaxθ (ξ, η) ,

Tmax [θ (ξ, η) − θ (ξ − 1, η)] − 
Bi

√π
 ∫ 
1

ξ

G (x − λ, η) T (λ) dλ ,

 

− ∞ < ξ ≤ 0 ,

0 ≤ ξ ≤ 1 ,

1 ≤ ξ < ∞ ,

(18)

where

θ (ξ, η) = √ξ  exp 



− 

η2

4ξ




 − η 

√π
2

 erfc 




η
2 √ξ




 ,   0 ≤ η < ∞ , (19)

Tmax = Λ√ π ⁄ 2  is the maximum value of the temperature, which is attained at the point ξ = 1 on the half-
space surface [1].

The surface temperature of the half-space behind the heating portion of determined from Eq. (15),
where with account for relation (19)

F (ξ) = Tmax (√ξ  − √ξ − 1 ) ,   1 ≤ ξ ≤ ∞ . (20)

Having substituted the resolvent R
~

(ξ) of (13) into solution (15) and having integrated, we obtain, with
account for relation (20), a formula for determining the temperature of the part of the surface of the half-
space behind the heating strip:

T (ξ) = Tmax T∗  (ξ) ,   T∗  (ξ) = √ξ  − √ξ − 1  − Bi θ1 (ξ) ,   1 ≤ ξ ≤ ∞ , (21)

where

θ1 (ξ) = 
1

√π
 



√ξ − 1  − 

π
2

 (ξ − 1) + ξ arcsin √1 − 
1

ξ
 



 − 

2

3
 Bi [ξ √ξ  −

− 1 − (ξ − 1) √ξ − 1] + 
Bi2

2 √π
 



(ξ − 2) √ξ − 1  − 

π
2

 (ξ − 1)2 + 
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+ξ2 arcsin √1 − 
1

ξ
 



 − 

2

15
 Bi3 [3 − 5ξ + 2ξ2 √ξ  − 2 (ξ − 1)2 √ξ − 1 ] . (22)

Knowing the surface temperature, from formulas (18)–(22) we can calculate the temperature field at
an arbitrary point of the half-space. Here it is necessary to determine the integral of the product of the func-
tions G(ξ − λ, η) of (6) and T(λ) of (21). For this purpose we employ the procedure of approximation using
piecewise-linear functions [8]. We represent the function T∗ (λ) in the form

T∗  (λ) ¡ T
~∗  (λ) =  ∑ 

j=0

m

 Tj
∗  ϕj (λ) ,   Tj

∗  = T∗  (λj) , (23)

where ϕj(λ) are piecewise-linear functions, λj = 1 + jδλ, j = 0, 1, ..., m, and δλ = (ξ − 1)/m.
Substitution of approximation (23) into relations (18) yields a formula for calculating the temperature

field in the half-space behind the heating portion:

T (ξ, η) = Tmax T∗  (ξ, η) ,   1 ≤ ξ < ∞ ,   0 ≤ η < ∞ ;

T∗  (ξ, η) = θ (ξ, η) − θ (ξ − 1, η) − 
Bi

√π δλ
  ∑ 

j=0

m

 Gj
(1) (ξ, η) Tj

∗  , (24)

the form of the functions Gj
(1)(ξ, η) is given in [1].

The dimensionless temperature T∗  (21) and (22) of the surface of the half-space behind the heating
strip decreases with increase in the Biot number (Fig. 1).

For a fixed value of Bi the dimensionless temperature T∗  of (24) decreases rapidly with distance from
the half-space surface (Fig. 2). This process is most rapid under the heating zone 0 ≤ ξ ≤ 1. In particular, the
effective depth of heating is approximately 3d in the cross section ξ = 1 and about 3d in the cross section
ξ = 2, while it increases to 7d for ξ = 5.

Fig. 1. Distribution of the dimensionless temperature T∗  of the half-space
surface for different values of the Biot number for a constant intensity of
the contact pressure (17).

Fig. 2. Distribution of the dimensionless temperature T∗  at different dis-
tances η from the half-space surface for Bi = 0.05 for a constant inten-
sity of the contact pressure (17).
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Arbitrary Distribution of Contact Pressure. If the function p∗ (τ) is not constant, then, to find the
temperature T(ξ, η) from formulas (5) we use the expansion

p∗  (τ) ¡ p~ ∗  (τ) =  ∑ 

i=0

n

 pi
∗  ϕi (τ) ,   pi

∗  = p∗  (τi) , (25)

where τi = iδτ, i = 0, 1, 2, ..., n and δτ = 1 ⁄ n.
Substitution of approximation formulas (23) and (25) into relations (5) for 1 ≤ ξ < ∞ and η = 0 leads

to the triangular system of linear algebraic equations

Tk
∗  + 

Bi

√π δλ
  ∑ 

j=0

k

 Gjk
(1) Tj

∗  = 
2

πδτ
   ∑ 

i=0

n

 pi
∗  Gik

(1) ,   k = 0, 1, 2, ..., m , (26)

where Gjk
(1) = Gj

(1)(λk, 0).
As a result of solving the system of equations (26) we find the values of the dimensionless surface

temperature at a discrete set of points Tj
∗  = T∗ (λj), j = 0, 1, ..., m. Then from formulas (5) we find the tem-

perature distribution in the half-space

T (ξ, η) = Tmax T∗  (ξ, η) ,   1 ≤ ξ < ∞ ,   0 ≤ η < ∞ ,

T∗  (ξ, η) = 
2

πδτ
  ∑ 

i=0

n

 Gi
(1) (ξ, η) pi

∗  − 
Bi

√π δλ
  ∑ 

j=0

m

 Gj
(1) (ξ, η) Tj

∗  . (27)

Finally we note that the expressions for finding the temperature in the region 0 ≤ ξ ≤ 1, 0 < η < ∞ are
the same as in the case of heat insulation of the free surface of the half-space [1].

One most frequently uses the Hertz distribution of the contact pressure

Fig. 3. Distribution of the dimensionless temperature T∗  at different dis-
tances η from the surface of a half-space for Bi = 0.01: a) Hertz distri-
bution of the pressure (28); b) constant pressure (17).

Fig. 4. Dimensionless temperature T∗  of the half-space surface vs. Biot
number in different cross sections ξ: a, b) the notation is the same as in
Fig. 3.
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p (x) = p0p∗  (x) ,   p∗  (x) = √1 − 




x − a
a





2

 ,   0 ≤ x ≤ 2a . (28)

Computations by formulas (26) and (27) showed that a noticeable difference in the temperature dis-
tribution in using formulas (17) and (28) is observed only in the heating strip 0 ≤ ξ ≤ 1 (Fig. 3). Behind this
region for 1 ≤ ξ ≤ ∞ and 0 ≤ η ≤ ∞ the corresponding temperatures practically coincide. Hence, with the Hertz
pressure distribution (28), too, one can use the analytical solution (21) for calculating the surface temperature
behind the frictional heat source!

The dependence of the surface temperature T∗  on the Biot number turned out to be linear (Fig. 4). A
slight difference in these dependences for the constant (17) and Hertz (28) distributions of the contact pres-
sure is observed only in the immediate vicinity (1 ≤ ξ ≤ 1.1) of the heating region.

NOTATION

T, temperature; T∗ (ξ, η) = T(ξ, η)/Λ, dimensionless temperature; Λ, constant determined from formula
(4) and having the dimensions of temperature; h, heat-transfer coefficient; a, halfwidth of the heating region;
K, thermal-conductivity coefficient; k, thermal-diffusivity coefficient; V, velocity of motion of the linear heat
flux; Γ(⋅), gamma function; q(x), intensity of the heat flux; (x, y), axes of the orthogonal Euler coordinate
system; f, coefficient of friction; p, contact pressure; p0, characteristic value of the contact pressure; d, effec-
tive depth of heating; Pe, Pe′clet parameter; Bi, Biot number; P, linear pressing force; H(⋅), Heaviside unit
function; erf(⋅), probability integral; erfc(⋅) = 1 − erf(⋅).
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